
WHITE PAPER

Best Practices for Defragmenting
Thin Provisioned Storage

BEsT PRAcTIcEs foR DEfRAgmEnTIng THIn PRovIsIonED sToRAgE 1

Why Defragment?
Before we cover considerations and recommended configurations in thin provisioned storage

environments, it’s important to revisit why defragmentation of Windows operating systems is so

important in a virtualized machine and/or virtualized storage environment.

The problem is that fragmented data in a local disk file system, such as NTFS, causes the

operating system to generate additional I/O requests. For each “logical” fragment in the file

system, a separate I/O request packet (IRP) must be generated and passed on to underlying

storage layers. So, for example, a file in 100 fragments would generate 100 separate smaller

I/Os, rather than a single larger I/O.

This translates to an operating system processing a great deal more unnecessary I/O traffic, thereby

increasing CPU and memory demand. In many cases, that excess I/O is passed on to a Storage

Area Network (SAN) and/or virtualization platform, causing additional unnecessary overhead.

In some cases, data that is in a contiguous sequence of clusters in a local disk file system will

be physically contiguous on the actual storage media, i.e., the disk drive/array. This is generally

a valuable added benefit, but by no means required for defragmentation to greatly increase

performance.

Some file systems (e.g., log-structured file system) used in SANs may intentionally fragment data

at the “block” level. They may coalesce random writes from the OS into sequential writes within

the storage. While this will minimize I/O activity in the SAN, it actually increases the likelihood that

the data in those sequentially written stripes is physically fragmented, because the coalescing

process is not based on re-ordering of blocks as they map to a common file – it simply dumps

the data to the media. For these environments, you’ll need to check with your storage vendor

regarding proprietary defragmentation solutions for their SAN.

Regardless of spatial proximity, the benefit of a fragment-free local disk file system (NTFS) is that

your OS and virtualization platforms aren’t processing extra I/Os generated due to fragmentation,

and will therefore be able to host more operating systems and process more data, faster.

Thin Provisioning 101
Thin provisioning allocates resources

from an aggregate storage pool, which is

essentially divided into assignable units

commonly referred to as “chunks.”

Provisioning storage in “thin” environ-

ments is done in chunks that are pulled

from that pool of available, and as yet

unallocated, storage.

We use it [Diskeeper®
performance software] on
our big SQL box (8-way
processor, hundreds of
gigs of space on a SAN,
16 gigs of RAM) and it
has increased our disk
performance by a factor
of about 8 or 9. We were
looking at adding more
spindles to our SAN to help
with some disk I/O issues
we had, but this wonderful
software did it for us.
– Dave Underwood,

Senior Engineer,
CustomScoop

Storage pools are made up of many small storage
units (chunks)

BEsT PRAcTIcEs foR DEfRAgmEnTIng THIn PRovIsIonED sToRAgE 2

As data is added to a thin provisioned container, such as a Dynamic/Thin virtual disk or a LUN,

that container increments, usually in a just-in-time basis, by a chunk or number of those chunks,

depending on how many chunks are needed to house all the incoming writes. A chunk can

be anywhere from a few kilobytes to gigabytes in size, and varies from one thin provisioning

technology vendor to the next. In some cases it is a fixed size, in other solutions the chunk size

is user-selectable.

How and when chunks are allocated also varies from vendor to vendor.

Many thin provisioning technologies provision for every write. They monitor blocks, and specifically

changes to blocks. As new data is written, space is provisioned for it on a just-in-time basis, and

it is stored.

The term “Thin on Thin”
refers to the use of thin
provisioning technology
at both the virtual platform
layer and the storage
array level.

Since Windows XP, all parts
of a file stream, up to and
including the allocation size
(the file tail between valid
data length and end of file)
can be defragmented.

Another method to provision space is based on the Windows volume high-water mark. A

high-water mark, with respect to a volume in this definition, is the term that describes the last

written cluster/block of data (the highest used Logical Cluster Number, or LCN, on the volume).

Everything beyond the high-water mark is assumed to be null.

NTFS Write and Delete Design
While not exactly “thin friendly,” NTFS is undeserved of the reputation of being a problem for thin

provisioned disks/LUNs. It has been mistakenly stated that NTFS carelessly writes to continuingly

new and higher LCNs, until it has written to every cluster on the volume, before circling back

around to clusters since freed up from file deletes. This is not correct.

When describing NTFS design as it relates to storage provisioning, we should first describe the

various file sizes. There are three sizes for files in NTFS, and they use high-water marks, too.

The Valid Data Length (VDL) is the distance into the file that data has actually been written, as it

resides in the cache. It is depicted as the blue bar in the diagram (next page). A VDL can include

sparse runs interspersed between data. The highest written LCN that constitutes the VDL is

the high-water mark for that file. There is no data, at least related to this file, that resides past

the high-water mark. Without having to actually write zeroes, and just as with high-water mark

storage volumes, reads attempted past the high-water mark return zeroes.

BEsT PRAcTIcEs foR DEfRAgmEnTIng THIn PRovIsIonED sToRAgE 3

The next step up is the File Size. It is the VDL plus some extra pre-reserved space that has yet to

be written to (uninitialized); also called the file tail. This is the full logical size of the file, shown as

the combination of blue and green in the diagram, and is terminated by EndOfFile (EOF) flag.

Lastly, there is the Allocation Size, which indicates the full physical size of the file, and is comprised

of the VDL and its following reserved space, up to the last cluster the file occupies any part of (may

be some cluster slack). It is shown as the combination of blue, green, and red in the diagram.

To aid in writing new data, the NTFS file system driver maintains a list of the largest free spaces

on the volume (i.e., the starting LCN and run length). When a file gets created, it gets created

in the free space that most closely matches the size of data available to write; in other words, a

“best fit.” Additionally, a presumption is made that a newly created file will end up larger than the

size that is currently available for the operating system to write, and extra free space, an “over-

allocation,” is reserved for the file so as to minimize fragmentation (see Microsoft Knowledge

Base article ID 228198). The presumption is that the file will be 2, 4, 8 or 16 times larger than the

currently known data size, depending on how much data is currently available for writing to the

file in the operating system’s file cache.

The file data is written to the volume, and the file is closed. Any over-allocation is then released,

returning to the free space pool and to the NTFS file system driver, if it qualifies as one of the

largest free spaces on the volume. For this part, and this is a critical point, NTFS is very thin-

friendly, as when it reserves that over-allocation, it can do so without writing to the volume

(i.e., writing out zeroes).

All said, this process does not eliminate fragmentation by any stretch, and hence the continuing

necessity to defragment the file system.

One issue that does exist with NTFS, that presents universal challenges for thin provisioned

storage, is the ability to recover space previously occupied by deleted files.

This is an issue because when files are deleted in NTFS, the file system simply updates its

metadata to indicate that the space occupied can be re-used for new file writes. A deleted file

is not actually removed/wiped from the volume. Therefore, abstracted storage layers residing

underneath NTFS may not be informed about this newly available free space.

This creates a problem for thin provisioned storage which, if presented with limitations on re-use

of space, could eventually exhaust all storage in the available pool.

In addition to “best fit”
attempts, Windows will
also attempt to write new
extents of a file in close
cluster proximity to existing
extents.

BEsT PRAcTIcEs foR DEfRAgmEnTIng THIn PRovIsIonED sToRAgE 4

A solution for this challenge, commonly known as Thin Reclamation, encompasses the awareness

of space formerly occupied by deleted data and actions then undertaken to recover and

re-provision that space. There are a variety of solutions available to aid with thin reclamation, such

as zeroing deleted clusters to the SCSI UNMAP / SCSI WRITE_SAME commands, and will vary

from vendor to vendor.

Defragmentation and Thin Provisioning
As covered earlier, defragmentation is vital to achieve and maintain peak performance. When Thin

Provisioning is implemented on a shared virtualization host file system, it creates a high degree of

probability of thin/dynamic virtual disk files themselves becoming fragmented, adding additional I/O

overhead. In those storage systems, solving fragmentation becomes even more important.

However, for all the benefits of defragmentation, it is important to be aware of potential side

effects. The side effects from defragmentation can vary from one thin technology implementation

to the next, so it is important to know how the two technologies interact.

Using special IOCTLs (I/O controls) in Windows, defragmentation is essentially moving data to

consolidate file fragments and to pool free space into large contiguous extents.

Where the provisioning technology allocates space on new writes, a defragmentation process

(which is actually only moving data) will appear as new writes. Additionally, the former locations

of moved data will not necessarily be known to be re-usable. Defrag will therefore generate

additional storage capacity requirements for every piece of data moved.

What can occur is that the new writes are redundantly provisioned, which results in unnecessarily

consumed space.

Many storage solutions
track block-level changes
(e.g., VMFS Change
Block Tracking – CBT) to
support advanced features
like snapshots and live
migration of data. So, if
the file system blocks used
for defragmentation are
minimized and the same
subset of blocks are
re-used through the defrag
process, the actual storage
growth will likely be minimal.

BEsT PRAcTIcEs foR DEfRAgmEnTIng THIn PRovIsIonED sToRAgE 5

Thin reclamation can effectively recover the wasted space, as could executing a data deduplication

process (which would recognize and remove redundant data).

Where high-water mark provisioning is used, the water mark always increases and never decreases

(on Windows), indicating less available space, creating a potential problem. If a file is written (or

moved via defragmentation) to a higher cluster, the thin provisioning technology will need to provision

space to accommodate. That is true even if the file is only moved to a high cluster temporarily.

V-locity® virtual platform
disk optimizer, Diskeeper
Pro Premier, Diskeeper
Server and Diskeeper
EnterpriseServer editions
use specialized engines
(Terabyte Volume Engine™
and Titan Defrag Engine™
technologies) designed
to generally defragment/
move files to lower LCNs on
Windows volumes.

On the opposite end of the spectrum, moving files “forward” can allow for space reclamation

processes to better recover over-provisioned space (depicted below).

The process of compacting files to the front of a volume is something defragmenters can

assist with.

BEsT PRAcTIcEs foR DEfRAgmEnTIng THIn PRovIsIonED sToRAgE 6

Proactive Fragmentation Prevention
It is important to evaluate marketing claims from defragmentation vendors about “eliminating/

preventing most fragmentation before it happens,” as the technology behind the marketing claim

can have differing consequences for thin provisioned storage.

Reactive solutions that rely on aggressive “free space consolidation” (packing files together) in

order to rely on NTFS’s native “best fit” attempts will cause thin provisioned growth.

Proactive technologies that do not require additional movement of any data in order to

accomplish their objective do not cause increases in thin provisioned storage. They provide the

benefit of a largely fragment-free OS file system without any negative consequences for thin

provisioned storage.

Patent pending IntelliWrite™ technology, from Diskeeper Corporation, is such a proactive solution.

IntelliWrite is a superior design (to NTFS native over-allocations) for reserving space at the tail of a

file’s valid data. IntelliWrite is smarter in that it looks at the source of file writes/modifications and

learns their behaviors over time. This heuristic process means that IntelliWrite knows better how

much reservation space an open file needs to prevent fragmentation. It may be the file needs

more than NTFS would natively offer, or it may pad less. The result of IntelliWrite’s intelligent over-

allocations is an unmatched degree of successful fragmentation prevention (up to 85% success

rate and more).

Best Practices
•	 	Use	 proactive	 fragmentation	 prevention	 technology,	 such	 as	 IntelliWrite	 from	 Diskeeper	

Corporation.

•	 	Know,	from	your	vendor	of	choice,	how	they	thin	provision	and	what	solutions	they	have	for	

space (thin) reclamation.

•	 	In	Thin-on-Thin	provisioned	environments,	space	reclamation	at	one	layer	(e.g.,	thin	virtual	disk)	

does not necessarily address other provisioned storage on subsequent layers (e.g., LUN).

•	 	Defragment	 thin	 provisioned	 volumes	 when	 the	 corresponding	 storage	 growth	 can	 be	

addressed (e.g., a de-duplication/thin reclamation process).

•	 	For	 high-water	 mark	 provisioning,	 use	 a	 defragmenter	 that	 moves	 files	 to	 lower	 LCNs	

(i.e., the “front”).

•	 	Use	an	OS/GOS	defragmenter,	or	a	defragmenter-mode	that	focuses	on	performance	and	

not a “pretty” display.

BEsT PRAcTIcEs foR DEfRAgmEnTIng THIn PRovIsIonED sToRAgE 7

•	 	Apply	SAN/VM	vendor	tools	to	eliminate	fragmentation	per	their	recommended	practices	for	

their proprietary clustered file systems.

•	 	File	sequencing/ordering	technologies	found	in	enterprise	OS	defragmenters	can	be	quite	

valuable in many environments, especially performance-focused solutions on Direct Attached

Storage. However, they can cause thin provisioned storage technologies to grow excessively

due to their extra movement of data, so the general recommendation is to disable them or

run them only when the effects (i.e., storage growth) can be addressed.

Diskeeper	Corporation	 7590	North	Glenoaks	Boulevard		 Burbank	California	91504-1052	USA

Toll-Free 800-829-6468 Phone 818-771-1600 Fax 818-252-5514 www.diskeeper.com

Counting over 80% of the U.S. Fortune 1000 as volume license customers, and with over two decades of innovation in system

performance and reliability (focused on storage performance), Diskeeper Corporation is a recognized expert in the storage

performance industry.

© 2010 Diskeeper Corporation. All Rights Reserved. Diskeeper Corporation, the Diskeeper Corporation logo, IntelliWrite, Terabyte Volume Engine, Titan Defrag Engine,
V-locity, and Diskeeper are registered trademarks or trademarks owned by Diskeeper Corporation. All other trademarks are the property of their respective owners.

